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Direct numerical simulation is used to study the development of a single laminar
vortex ring as it impinges on a free surface directly from below. We consider the
limiting case in which the Froude number approaches zero and the surface can be
modelled with a stress-free rigid and impermeable boundary. We find that as the ring
expands in the radial direction close to the surface, the natural Tsai–Widnall–Moore–
Saffman (TWMS) instability is superseded by the development of the Crow instability.
The Crow instability is able to further amplify the residual perturbations left by the
TWMS instability despite being of differing radial structure and alignment. This
occurs through realignment of the instability structure and shedding of a portion of
its outer vorticity profile. As a result, the dominant wavenumber of the Crow instability
reflects that of the TWMS instability, and is dependent upon the initial slenderness
ratio of the ring. At higher Reynolds number a short-wavelength instability develops
on the long-wavelength Crow instability. The wavelength of the short waves is found
to vary around the ring dependent on the local displacement of the long waves.
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1. Introduction
Vortex rings are present in a wide range of engineering and biological flows (see

Shariff & Leonard 1992). The interaction of a vortex ring with a free surface has been
a topic of particular interest, as the flow experiences vortex tilting, stretching and
reconnection, characteristic phenomena of fully turbulent flow. It has been shown that
the instability of vortex pairs leads to the production of a series of vortex rings in both
a stratified (Garten et al. 2001) and non-stratified (Crow 1970) ambient fluid; thus
this investigation also models the surface interaction of submarine wakes generated
during a diving procedure. Here we focus on the temporal development of a single
ring as it approaches a surface directly from below, and consider how the growth of
the ring instability is affected.

The behaviour of a ring as it approaches a clean (treated to remove surfactants)
free surface directly from below was investigated experimentally by Song, Bernal &
Tryggvason (1992). As the ring nears a depth d of order its radius R, its motion
becomes increasingly influenced by its implied image above the surface. The ring
stretches in the radial plane until, at a depth of order the core thickness δ, it expands
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laterally, approximately parallel to the surface, leading to a constriction of the core
region. Three-dimensional disturbances develop around the ring, distorting the core
region into a stationary wave. The wavy instability develops faster for rings at higher
Reynolds number Re = Γ/ν (where Γ is the total circulation of the ring and ν is
the kinematic viscosity of the fluid). When the ring expands to approximately four
times its initial radius, the wavy core region connects at the surface in a series of U-
shaped hoops. A number of numerical studies (Song et al. 1992; Wu, Fu & Ma 1995;
Ye & Chu 1997) have been undertaken to investigate the interaction, however, their
respective assumptions exclude the influence of the instability on the ring dynamics,
which we seek to address in this study.

If the ring Froude number Fr =Γ/
√

gR3 (where g is the gravitational acceleration)
is small, the surface displacement caused by the ring is negligible and the behaviour
of the ring is analogous to the head-on collision of two vortex rings, investigated
experimentally by Lim & Nickels (1992) and numerically by Stanaway, Shariff &
Hussain (1988). Here, the role of the virtual image is taken by the second ring. In
the majority of the Lim and Nickels runs, for which the Reynolds number based
on initial ring parameters Rep = UD/ν ≈ 1000 (where U is the translational velocity
of the ring and D is its diameter), the wavy instability developed simultaneously on
both rings as they expanded. This culminates in multiple reconnections of the two
core regions, forming a series of small rings. However, in certain runs, a much shorter
wave instability, with wavelength of order of the core thickness was also present.
The growth of both short- and long-wavelength instabilities has also been found
in the temporal development of a vortex pair, studied experimentally by Leweke &
Williamson (1998) and numerically by Laporte & Corjon (2000). Both studies found
that regions of the two cores which are displaced close to one another by the long-
wavelength instability are more susceptible to the short-wavelength instability. Unlike
the symmetric long-wavelength instability, the short-wavelength instability grows 180◦

out of phase on each vortex pair.
Previously, examples of the short and long-wavelength instabilities have been

recorded for vortex rings (see e.g. Krutzsch 1939; Maxworthy 1972; Widnall &
Sullivan 1973) and a vortex pair (Crow 1970). A requirement for the amplification
of both instabilities is the presence of a strain field, which is self-induced for the
case of a vortex ring and originates from the neighbouring vortex filament in the
case of a vortex pair. In the absence of strain, Kelvin (1880) showed that for a
rectilinear vortex filament, disturbances in the form exp[i(kz − �t + mθ)] (where k is
axial wavenumber, � is frequency and m is the wavenumber with respect to θ , the
angular position around the core), rotate around the azimuth of the core without
changing their shape. Widnall, Bliss & Tsai (1974) argued that in the presence of
strain, helical waves with mode m = ± 1 would be unstable if their rotation rate
was equal to zero. This was later proved, in a more rigorous fashion, by Moore &
Saffman (1975) and Tsai & Widnall (1976) for single line vortices and extended to
Burgers and Lamb–Oseen vortices by Eloy & Le Dizés (1999). Vortex rings with a
constant distribution of vorticity in the core region were also shown to be unstable
to helical waves by Widnall & Tsai (1977). The instability is presently viewed as
an example of an elliptic instability, for which a vortex with elliptic streamlines will
undergo parametric resonance when two disturbance waves whose wavenumber m

differs by 2, are simultaneously excited (see Kerswell 2002 for a review). For helical
waves (m ± 1) any number of radial modes can exist and are potentially unstable.
The long-wavelength (hereafter Crow) instability is an example of the first radial
mode. In effect, the disturbance is a sinusoidal displacement of the core in the
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Figure 1. Schematic diagram of the head-on collision of a vortex ring with a surface.

plane of maximum amplification, otherwise known as a wave of pure bending. Crow
(1970) showed that for the case of a vortex pair, the instability grew in a plane
inclined at approximately 45◦ to the plane of symmetry separating the two cores. The
short-wavelength or Tsai–Widnall–Moore–Saffman (hereafter TWMS) instability is
an example of the second radial mode. It results in the inner and outer core regions
moving in opposition to one another in a radial plane through the core centre, clearly
visible in experimental visualizations of vortex rings (see e.g. figure 6 in Sullivan et al.
2008). For the case of rings and line vortices subjected to a plane strain, the first and
second radial modes are most common as viscosity preferentially damps the higher
order modes.

In this paper, we investigate the behaviour of a vortex ring as it approaches and
interacts with a rigid free surface, considering the effect of Reynolds number on the
ring structure, dynamics and instability growth. Our main aim is to understand how
the different instability mechanisms can combine to produce the final ring structure.

2. Problem definition
We consider a single vortex ring of radius R and characteristic core radius δ,

with circulation Γ and impulse P . The non-dimensional parameters which define
the investigation are the slenderness ratio ε = δ/R of the ring, the Reynolds number

Re =Γ/ν and Froude number Fr = Γ/
√

gR3, where g is the acceleration due to
gravity. We consider the limiting case in which Fr → 0, allowing us to model the
free surface with a stress-free rigid and impermeable boundary. The ring propagates
vertically towards the free surface along the z direction with respect to Cartesian
coordinates x =(x, y, z) as shown in figure 1. The vortex is initially embedded at
depth d0 such that it is centred about x = (0, 0, −d0) at time t = t0.
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We measure the radius and depth of the ring by calculating the position of the
centroid of enstrophy in the (r, z) plane,

R =
1

2Ω

∫
r |ω|2 dx dy dz, (2.1)

d =

∣∣∣∣ 1

2Ω

∫
z|ω|2 dx dy dz

∣∣∣∣ , (2.2)

where Ω =
∫

|ω|2dx dy dz is the total enstrophy, vorticity ω = ∇ ∧ u with velocity

components u = (u, v, w) and r =
√

x2 + y2.

3. Numerical approach
Our numerical approach is based on that used to investigate the evolution of

unbounded vortex rings of differing slenderness ratio (Archer, Thomas & Coleman
2008). The incompressible Navier–Stokes equations are discretized on a conventional
staggered grid using second-order finite differences in space and the Adams–Bashforth
algorithm in time, with continuity imposed by applying pressure-correction methods
with a parallel multigrid Poisson solver (Yao et al. 2001). The Cartesian computational
domain assumes periodic boundary conditions in the x and y directions, so that we
are, in effect, simulating an infinite array of vortices, but with the domain widths Lx

and Ly chosen to be sufficiently large that the effects of periodicity are small (see
Archer et al. 2008). We employ rigid (zero flux), free-slip boundary conditions at z = 0
and z = − Lz. By restraining the surface, we remove the influence of opposite-signed
vorticity generated at the surface due to curvature (Longuet-Higgins 1998).

3.1. Initial conditions

The vortex ring is initiated with a Gaussian distribution of vorticity, which is
positioned around a centreline path. The ring is perturbed from being perfectly
circular by addition to the local radius of a set of Fourier modes of wavenumber 1 to
32, which have random phase and an amplitude of 0.0002R0. As the Gaussian
distribution is only correct in the limit of δ → 0, the ring undergoes an initial
adjustment during which it approaches its steady-state vorticity profile. To prevent
the ring from impinging on the surface before it approximates a steady state would
require that the ring be prescribed at a large depth below the surface. This would
lead to an excessively large computation, since the domain must also be wide enough
to allow the ring to expand upon reaching the surface. We solve the problem by
evolving a ring in a smaller precursor simulation which not only allows the ring
to adjust to its steady state but also develops the beginnings of structure around
the ring as the TWMS instability develops. The precursor simulation assumes inflow
and outflow boundary conditions in the direction of ring propagation and follows
the same procedure described in Archer et al. (2008). A ring of radius R00 and
circulation Γ00 is initialized with parameters δ00/R00 = 0.2, Re00 =Γ00/ν = 7500 and
a radial profile proportional to exp (− (r/δ00)

2). The cubic computational box is of
size 8R00 × 8R00 × 8R00 with 256 × 256 × 256 grid cells. After the ring has evolved
for time t0Γ00/(R00)

2 = 47, the resultant vorticity field is used to prescribe the initial
velocity field for the free-surface investigation. The domain is lengthened in the x and
y directions by extending the vorticity field with extra cells of value zero. Similarly
the domain is truncated above and below the ring in the z direction by removing cells.
These procedures are acceptable because the vorticity field naturally goes to zero in
both the lateral and longitudinal limits. The velocity field then follows by solving for
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Case R0/R00 Γ0/Γ00 δθ/R0 a1/R0 ae/R0 Fr Re

A 1.054 0.989 0.24 0.26 0.34 0 3708
B 1.054 0.989 0.24 0.26 0.34 0 7417
C 1.054 0.989 0.24 0.26 0.34 0 11126

Table 1. Run parameters. The single zero subscript refers to quantities at time t0, corresponding
to the start of the free-surface simulation. The double zero subscript refers to quantities at the
start of the precursor simulation. See text for definition of δθ , a1 and ae .

the vector stream function that is consistent with the vorticity distribution, and taking
its curl. The adjusted ring has radius R0 and circulation Γ0 and is embedded at depth
d0 = 2.85R0 below the free surface at time t0. Table 1 presents measures of the core
radius δθ , a1 and ae at the start of the free-surface simulation. Here δθ is an integral
measure of the core radius related to impulse by δθ =2(P/(πΓ ) − (1/Γ

∫
rωθdrdz)2),

where P = π
∫

r2ωdrdz is the ring impulse and ωθ is the azimuthal vorticity (Archer
et al. 2008). More accessible from experimental data are the measures a1 and ae,
which respectively refer to the distance from the core centre to the point of maximum
tangential velocity and the speed-effective core radius. The speed-effective core radius
ae is defined as the core radius of a vortex ring propagating at an equivalent speed
and with a uniform vorticity distribution, such that

U =
Γ

4πR

[
ln

(
8R

ae

)
− 0.25

]
, (3.1)

where U is the propagation velocity (Lamb 1932). For the free-surface investigation,
the computational domain initially measures Lx = Ly = 13.3R0 and Lz =5.7R0 with
Nx = Ny = 448 and Nz =192 cells in the horizontal and vertical directions, respectively.
Three thin-core cases are considered, identical except for Reynolds number (table 1).
This will allow us to isolate the effect of viscosity on the behaviour of the ring
instabilities.

3.2. Interpolation and regridding of the computational domain

The experiments of Song et al. (1992) show that the ring expands in the radial
direction at the surface, leading to constriction of the core region. At the surface, δ

can be approximated by the depth of the ring (see § 4.1). If circulation were conserved
and the effect of viscosity ignored, one would expect the volume of the core region to
be conserved and δ2 ∝ 1/R. However, our findings show that δ decreases faster than
the inviscid result (see figure 2a), which can be attributed to the decay of circulation
from the ring (see § 4.1). The initial resolution of the laminar ring was shown to be
sufficient by Archer et al. (2008) through comparison of results with a spectral code
and monitoring of the rate of decay of kinetic energy against the rate of kinetic energy
dissipation. However, to maintain adequate resolution of the core as the ring expands,
it is necessary to interpolate the flowfield. This occurs in two discrete stages when
the ring has expanded to R = 1.2R0 and R = 3.0R0. The initial interpolation doubles
the number of grid cells in all directions and the second interpolation increases the
resolution further by a factor of 1.5, preserving the number of grid points across the
core (see figure 2a). The technique uses a Fourier scheme in the x and y directions
and a bicubic method in the z direction, in which the gradient terms are evaluated
through central differencing.
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Figure 2. (a) Comparison of δ versus R for different Cases: – · – , A; – – – , B; — , C. The
thick solid line denotes core radius predicted by conservation of the core volume. The dotted
line indicates the minimum core radius above which the resolution quality exceeds that of the
initial field. (b) Comparison of the evolution of energy of selected azimuthal modes for Case B
and B′. Case B: – · · – , n= 8; – · – , n= 9; – – – , n= 10; — , n= 11; ···· , n= 12. Thick solid
lines indicate corresponding results for Case B′.

To avoid excessively large computations it is necessary to truncate the domain in
the z direction by removing cells from below the ring during the interpolation routine.
However, the distance from the ring to the lower boundary is kept greater than 4d to
prevent the image, associated with the zero-stress boundary condition at the bottom
of the domain, from slowing the expansion of the ring at the surface. At the first
interpolation, the z-axis is shortened to Lz = 1.9R0 and then to Lz =1.27R0 at the
second interpolation. A limit is also placed on the ring’s radial expansion and the
simulation is terminated before the ring moves within four ring depths of the lateral
boundaries.

As the ring propagates towards the surface it produces a wake of weak vorticity
(Archer et al. 2008). By truncating the domain we are removing a portion of this
wake from the simulation. While this does not affect the dynamics of the ring,
it will impact slightly on the integral measures of R, δ, Γ and d by introducing
small discontinuities at R/R0 = 1.2 and 3. Note, however, that the discontinuities
at R/R0 = 3.0 are too small to be discerned in the δ history shown in figure 2(a)
(similar behaviour is observed at R/R0 = 1.2). That the regridding of the domain
has no adverse effects is demonstrated by examining the growth in energy of the
ring’s azimuthal modes, revealed by an azimuthal Fourier transform (see § 4.2), for a
short time after the interpolation and truncation procedure. Figure 2(b) compares the
evolution of selected modes for Cases B and B′. The cases are identical except that
the domain for B′ is neither interpolated nor truncated at (t − t0)Γ0/R

2
0 = 18 (when

R/R0 = 3). There is no appreciable difference between the two cases.

4. Results
4.1. Ring trajectory and circulation

The interaction of the ring with the surface happens in three distinct phases: approach,
slowing and expansion (figure 3). During the approach phase the ring is far enough
from the surface for its motion to be unaffected by its image above the surface,
and consequently it propagates by self-induction in approximately the same way
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Figure 3. (a) Variation of the position of the ring’s centroid of enstrophy in the z and r
directions with time: – · – , Case A; – – – , Case B; — , Case C. (b) Time history of the overall
circulation (same line styles used as in subfigure a). (c) Azimuthal vorticity ωθ contours for
Case B at time (t − t0)Γ0/R
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as an unbounded ring. Figure 3(a) shows the depth and ring radius as a function
of time for Cases A–C, as well as the experimental results of Song et al. (1992)
(open symbols), for a more slender core (ae/R =0.204) at higher Reynolds number
(15 100), and non-zero Froude number (Fr = 0.287). The experimental ring moves
faster towards the surface than our cases because of its smaller slenderness ratio,
which increases its translational velocity (3.1). During the approach phase the overall
circulation is approximately constant (see figure 3b). As the depth of the ring below
the surface becomes comparable to the radius it enters the slowing phase. Here, the
influence of the virtual image above the surface becomes significant, reducing the
ring’s translational velocity and causing it to expand.

Finally, for R � 2.25R0, the ring enters the expansion phase, where it is strongly
influenced by proximity to its image and its own curvature is less important. During
this phase the ring and its image can be locally approximated by a pair of line vortices
propagating parallel to the surface. Figure 3(a) shows that for Cases A–C the rate
at which the ring expands depends on the Reynolds number Re, higher for greater
Re. The velocity induced at a point by an infinite straight vortex filament is given
by V =Γ/2πh, where h is the perpendicular distance from the point to the vortex
filament. As the ring expands at a small distance from the surface the core radius
is approximately equal to the ring depth (see figure 3c), thus the distance between
the ring and its image h is approximately equal to twice the core radius, such that
V ∝ 1/δ. Since the diffusion of the vortex core is smaller for the higher Reynolds
cases (see figure 2a), the ring and its image are closer and correspondingly the ring
propagates faster in the radial plane. Additionally, the circulation is also higher for
the larger Reynolds number cases (see figure 3b), which also increases the rate at
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which the rings expand, since V ∝ Γ . During the expansion phase, the experimental
results can be seen to diverge from Case C even though the Reynolds numbers are
broadly similar. The divergence can be attributed to the experimental ring causing a
displacement to the surface, absent from our stress-free rigid surface simulations. The
surface displacement takes the form of a depression of depth approximately 0.02R0

(Song et al. 1992), which propagates ahead of the expanding ring. Surface curvature
associated with the depression acts as a source of opposite-sign secondary vorticity
ahead of the ring (Longuet-Higgins 1998) and reduces its circulation.

During the expansion phase we see a rapid approximately linear decay in circulation
(see figure 3b) coinciding with the ring meeting its image at the surface. Vorticity
contours show that the ring sheds a significant wake as it propagates under the
surface (see figure 3c). However, this wake is not excluded from our calculation of
the total circulation. Consequently we conclude that the decay of circulation can be
attributed to the destruction of vorticity at the surface by the symmetry boundary
condition. It results from the necessary condition that azimuthal vorticity ωθ tends
to zero at the surface, which annihilates the vorticity. Vorticity annihilation was also
reported during simulations of the head-on collision of two vortex rings by Stanaway
et al. (1988).

4.2. Growth of unstable modes

At time t = t0, despite appearing to have smooth regular isosurfaces of vorticity, the
ring already contains a very small amplitude wavy structure. The wavy structure
was developed during the precursor simulation as a natural consequence of the
ring’s susceptibility to the TWMS instability. The relative strength of each wave
component can be determined by calculating the perturbation kinetic energy En of
azimuthal Fourier modes corresponding to n cycles around the ring (Archer et al.
2008). This is accomplished by interpolating the velocity field onto a cylindrical grid
and performing a Fourier decomposition in the azimuthal direction. For a ring with
a Gaussian distribution of vorticity, the theoretical estimate of the most amplified
azimuthal mode n̂ is given by n̂ ≈ 2.26/ε (Shariff, Verzicco & Orlandi 1994). During
the precursor simulation, n̂ lies in the range 11–9, tending to gradually smaller n as
the core diffuses with time. This results in modes n= 10 and n= 11 being dominant
at the start of the surface simulation (figure 4). As the ring propagates towards the
surface, modes n= 9 and n= 10 amplify with the largest growth rate, consistent with
the theoretical estimate. The growth of these two modes in the absence of a surface,
obtained through a continuation of the precursor simulation is also shown in figure 4.
The initially close fit between the simulations, shows that the surface has a negligible
influence on the ring instability until the ring reaches the slowing phase.

During the slowing phase the ring radius increases, as the core radius decreases (see
figure 2a), leading to a rapid decrease in slenderness ratio ε. Correspondingly, the
window containing the most amplified mode n̂ increases and the modes previously
amplified during the approach phase begin to decay, diverging from the unbounded
results. Additionally, the self-induced strain responsible for amplification of the
TWMS instability decreases as the ring expands. However, this is complemented
by an increase in the strain contributed by its implied image as it nears the surface.
This results in a change to the orientation of the strain field, which must rotate
through approximately 90◦ in order to bridge between the two sources of strain.

As the radius of the ring increases, its curvature decreases and the ring and its
image tend to approximate a pair of line vortices, which are known to be susceptible
to the Crow instability (hereafter we use the term ‘Crow’ to refer to the instability
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of slightly curved vorticies close to the surface, implying a qualitative similarity to
the strictly rectilinear case; for a formulation that accounts for curvature effects see
Swearingen, Crouch & Handler 1995). Figure 4 shows that the azimuthal modes begin
to amplify for a second time as the ring passes into the expansion phase. The close
proximity of the ring to the surface results in the core radius being approximately half
the distance between the ring and its image, i.e. equal to the distance to the surface.
Leweke & Williamson (1998) showed that for a pair of line vortices characterized
by δ/b = 0.5 (where b is the distance between the vortices), the minimum wavelength
susceptible to the Crow instability is λmin = 3.2b and the wavelength of maximum

amplification is λ̂= 5b. For Case B, at the start of the expansion phase this equates to
a mode being unstable if n< 2πR/6.4δ ≈ 15 and explains the broadband amplification
of all of the modes in figure 4. The range of unstable azimuthal modes will increase
monotonically with time as the core radius constricts and b decreases.

Since the azimuthal modes only decay during the slowing phase by approximately
a decade before a second amplification begins, it appears that the wavy structure,
initially developed by the TWMS instability, is further amplified by the Crow
instability. The direct transfer of energy between helical modes of differing radial
structures is unprecedented to our knowledge. To explain how this occurs, let us first
consider the radial structure of the instability mechanisms. The TWMS instability is
unstable to the second radial mode of helical waves (m ± 1), which feature one zero
crossing in the radial plane through the core centre. This leads to the inner and outer
core regions being displaced in opposite directions to one another in the plane of
maximum strain (see figure 5a). In contrast, the Crow instability amplifies the first
radial mode of helical waves (m ± 1), which have no zero crossings in the radial plane
through the core centre. The inner and outer core are displaced in phase with one



88 P. J. Archer, T. G. Thomas and G. N. Coleman

2
β

β

1

0

0–1–2 1 2

–1

y/
R

0

–2

6

4

2

0

–6 –4 –2 0 2 4 6

y/
R

0

x/R0

–2

–4

–6

(a)

(b)

Figure 5. Illustration of the TWMS and Crow instabilities: (a) TWMS instability. Central
figure taken from results used in Archer et al. (2008) for a ring with ε0 = 0.2 and Re0 = 7500 at
time tΓ0/R
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0 = 80.95, showing two isosurfaces of vorticity magnitude, |ω| R2
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0/Γ0 = 1.0 (light, translucent) indicating the inner and outer core respectively. Schematic

diagram shows the displacement of the inner and outer core in the (r, z) plane marked with
a dashed line. (b) Crow instability. Main figure shows the Crow instability of Case B at
time (t − t0)Γ0/R
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Schematics show the relative translation of the core region in the planes marked with dashed
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another in a wave of pure bending (see figure 5b). Since both instability mechanisms
have the common feature of a stationary wave, it is feasible that transfer of energy
from a TWMS to a Crow instability could occur if the outer core structure was either
shed or reorganized to move back in phase with the inner core. However, this alone
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is not a complete explanation, as the planes in which the two instabilities develop
are approximately orthogonal to one another. The wavy structure developed by the
TWMS instability must therefore rotate if it is to be further amplified by the Crow
instability.

Prior to the expansion phase, the wavy structure is of very small scale,
indistinguishable in isosurfaces of vorticity. However, an indication of the alignment
of the wavy disturbances can be obtained by considering the distribution of the
root mean square fluctuations of the azimuthal vorticity ωrms

θ (figure 6a). Since ωrms
θ

is calculated by averaging in the azimuthal direction, it highlights deviations of ωθ

from its mean value around the ring (i.e. wavy behaviour). Contours of ωrms
θ during

the approach phase are shown in the lower subfigure of figure 6(a). The TWMS
instability results in four distinct contoured regions, the inner two highly contoured
regions correspond to the wavy displacement of the inner core and the lower outer
contours correspond to the outer core. The outer contours are of smaller magnitude
by virtue of the weaker ωθ in the outer core. The plane in which the structure aligns
is inclined at an angle β = − 60◦ to the direction of ring propagation. Our method
of measuring β differs from that used by Shariff et al. (1994) and Maxworthy (1972)
who recorded angles of −48◦ and −45◦ respectively. In these papers the alignment of
the wavy inner core was directly measured, however, this is not available to us during
the approach phase due to the negligible amplitude of the wavy instability.

As the ring moves closer to the surface and begins to expand parallel to it, figure 6(a)
shows that the contours of ωrms

θ rotate by about 100◦. As the wavy core is rotating,
a region of vortical structure is deposited at the surface and remains there while the
ring expands. The deposited structure is revealed in figure 6(b) by a low isosurface
of the second invariant of the velocity gradient tensor. We infer that as the ring
structure rotates near to the surface a portion of the outer core is stripped away from
the ring. By shedding the outer core structure and rotating the inner core, the ring
transfers its core structure from the second radial mode to the first, allowing further
amplification of the wavy structure by the Crow instability. The deposited structure
is also clearly visible in the experiments of the head-on collision of two vortex rings
(see figures 1 and 3 of Lim & Nickels 1992, in which the deposited structure is
labelled as a ‘membrane’). For the head-on collision of a ring with a free surface,
Song et al. (1992) used hydrogen bubbles to visualize the ring. Although this method
of visualization does not make apparent regions of lower vorticity we would expect
the same phenomena to be present there also.

The question arises as to whether the physical processes described above transfer
energy between the orthogonal TWMS and Crow modes in a linear or nonlinear
fashion. A nonlinear mechanism could readily explain the phenomena, however in
this instance we note that the amplitude of the instability is still quite small when
the energy is transferred. Instead, we believe that the modal transfer is achieved in a
linear fashion involving slow changes in the mode shape as the ring approaches the
surface. In effect there is coupling between nearby modes due to parametric changes
(i.e. distance of the ring to the surface).

The rotation of the wavy structure and shedding of a portion of the outer core
region occurs for all three cases. The cases do however vary in their respective growth
rate α for both the TWMS and Crow instabilities. Viscosity is known to damp the
TWMS instability (Shariff et al. 1994) leading to Case C having the highest instability
growth rate on its approach to the surface. After the instability structure has rotated
and is amplified once more by the Crow instability, Case C also initially features
the highest growth rate for the dominant mode (figure 7). This is due to its higher
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0/Γ
2
0 = − 0.005, time (t − t0)Γ0/R

2
0 = 23.0.

circulation (figure 3b) and closer proximity to the surface (figure 2a), which increases
the local strain on the core. The growth rate of the dominant mode for Cases B
and C decays towards the end of their respective simulations as the modes begin to
saturate (see (t − t0)Γ0/R

2
0 > 23 in figure 4).
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Figure 7. Variation of the growth rate for the dominant azimuthal mode during the
expansion phase: – · – , Case A (n= 10); – – – , Case B (n= 10); — , Case C (n= 11).

4.3. The emergence of a short-wavelength instability

In the latter stages of Case C an additional short-wavelength instability develops
rapidly around the ring. Its wavelength is of order of the core thickness and its
radial structure is suggested by the relative displacement of vorticity isosurfaces (see
figure 8). The isosurfaces show that the inner core is displaced in opposition to the
outer core, consistent with the amplification of helical waves (m ± 1) of the second
radial mode just as for the TWMS instability. Displacement of the inner and outer
core is also apparent in the later stages of Case B. Case A, at the lowest Reynolds
number, does not show any visible signs of a short-wavelength instability, which
demonstrates the role of viscosity in damping the instability.

The development of the Crow instability is not uniform around the azimuth of the
ring, an observation also made by Lim & Nickels (1992). This is due to constructive
interference between neighbouring azimuthal modes. It is particularly apparent for
Case C, in which the dominance of mode n= 11 over n= 10 is small, causing a
noticeable ‘lop-sidedness’ in the growth of the long waves. This lop-sidedness leads
to variation in the wavelength of the short waves around the ring. Where the core
is displaced very close to the surface, by the Crow instability, the wavelength is
significantly longer than at regions that are displaced farther from the surface. This
is shown by the displacement of the weak outer core vorticity, marked with light grey
in figure 8(a).

The superposition of short waves on a long-wavelength instability was also noted
in the experiments of Lim & Nickels (1992) for colliding rings and by Leweke &
Williamson (1998) for a pair of line vortices. However, the asymmetric development of
the short-wavelength instability found by Leweke & Williamson (1998) is prevented
here by the rigid surface, which enforces symmetry in the short waves with respect to
their image. Leweke & Williamson (1998) found that the wavelength of their short-
wave instability was approximately 80 % of the initial spacing between the vortex
pairs. For our rings, the distance of the ring centroid to the surface and hence the
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spacing from its image, decreases greatly as the ring expands, which does not allow
direct comparison with their measure of λs .

5. Summary and closing comments
As a laminar vortex ring impinges on a rigid free surface its instability changes

in both radial structure and alignment. Its approach to the surface is marked by
the growth of the TWMS instability, which amplifies helical waves of the second
radial mode. As the ring slows and then expands in the radial direction close to
the surface, it is susceptible to the Crow instability, which amplifies helical waves
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of the first radial mode. Despite being of differing radial structure and alignment,
the evolution of the ring’s azimuthal modal spectrum shows that the wavy structure
developed by the TWMS instability acts as a perturbation to the Crow instability
and is further amplified. The transfer of energy between the TWMS and Crow modes
occurs through rotation of the wavy inner core structure and shedding of a portion of
the outer core vorticity. The most unstable azimuthal modes amplified by the TWMS
instability are given by n̂ ≈ 2.26/ε (Shariff et al. 1994). Thus the initial slenderness
ratio ε determines the number of cycles of the long wave amplified by the Crow
instability and the final ring structure. The close agreement between our findings and
the experimental observations of a ring impinging on a deformable surface (Song
et al. 1992) and the head-on collision of two rings (Lim & Nickels 1992), suggests
that the same mechanisms are at play there as well.

During the latter stages of our moderate and high Reynolds number cases a short-
wavelength instability grows, superimposed on the long waves that are amplified by
the Crow instability. The displacement of the inner and outer core regions suggests
that the instability amplifies helical waves of the second radial mode, just as for the
TWMS instability. The wavelength of the short waves is modulated around the ring
and is greatest in regions of the core that are displaced closest to the surface by
the Crow instability. Despite forming a number of seemingly identical rings, Lim &
Nickels (1992) found that the short-wavelength instability did not develop in all runs.
Although we find that the short-wavelength instability grows faster than the Crow
instability, its appearance will depend on the relative growth of the earlier TWMS
instability. If the Crow instability is sufficiently perturbed before the expansion phase,
the long waves will be sufficiently developed to pinch off to form rings prior to the
appearance of the short waves.

The formation of U-shaped loops, associated with the disconnection of the vortex
core around the ring and reconnection with its image above the surface, is absent from
our simulations, in contrast to the experiments of Song et al. (1992). However, we
do find a large-amplitude long-wavelength displacement of the core, due to the Crow
instability. This occurs in the experiments, immediately prior to the reconnection
process (see figure 1d in Lim & Nickels 1992). It is likely therefore that a larger
computational domain would capture this phenomena. As described above, we can
estimate the slenderness ratio of the experimental rings from the number of long
waves that develop around the ring as it expands. Note that Song et al. (1992) and
Lim & Nickels (1992) considered slightly thinner rings, with 0.12 � ε � 0.16. Our
results suggest that the radius at which the ring disconnects and reconnects with its
image (or neighbour) is likely to be a function of the slenderness ratio ε, the initial
depth d0 and the Reynolds number. Decreasing ε or increasing the Reynolds number
raises the growth rate of both the TWMS and Crow instabilities. Also, by increasing
d0, the TWMS instability would have been more developed when the ring reached
the surface, requiring less amplification by the Crow instability. However, if either of
the above parameters were sufficiently modified, the ring may transition to turbulence
prior to interacting with the surface. Future work will consider these factors, as well
as the influence of a deforming free surface.
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